5-7 Videos Guide

5-7a

- Surface integral of a scalar field $f(x, y, z)$
- $\iint_{S} f(x, y, z) d S=\iint_{D} f(\mathbf{r}(u, v))\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A$

Note that $d S=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A$.

Exercises:

- Evaluate the surface integral.
- $\iint_{S} x y z d S$,
S is the cone with parametric equations $x=u \cos v, y=u \sin v, z=u, 0 \leq$ $u \leq 1,0 \leq v \leq \pi / 2$

5-7b

- $\iint_{S} x y d S$,
S is the part of the plane $2 x+2 y+z=4$ that lies in the first octant

5-7c

- If S consists of multiple surfaces S_{i}, then

$$
\iint_{S} f(x, y, z) d S=\iint_{S_{1}} f(x, y, z) d S+\iint_{S_{2}} f(x, y, z) d S+\cdots \iint_{S_{n}} f(x, y, z) d S
$$

Exercise:

- Evaluate the surface integral.
$\iint_{S}\left(x^{2}+y^{2}+z^{2}\right) d S$,
S is the part of the cylinder $x^{2}+y^{2}=9$ between the planes $z=0$ and $z=2$, together with its top and bottom disks

5-7d

- Surface integral of a vector field $\mathbf{F}(x, y, z)$

○ Flux is $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iint_{D} \mathbf{F} \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d A$
Note that $d \mathbf{S}=\mathbf{n} d S=\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d A$, where \mathbf{n} is a unit normal vector and $\mathbf{r}_{u} \times \mathbf{r}_{v}$ is simply a normal vector to the surface S.

- If x and y are the parameters, we have
$\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}\left(-P \frac{\partial g}{\partial x}-Q \frac{\partial g}{\partial y}+R\right) d A$, for upward orientation. The signs of the integrand change for downward orientation.

Exercises:

5-7e

- Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ for the given vector field \mathbf{F} and the oriented surface S. In other words, find the flux of \mathbf{F} across S. For closed surfaces, use the positive (outward) orientation.
- $\mathbf{F}(x, y, z)=-x \mathbf{i}-y \mathbf{j}+z^{3} \mathbf{k}$,
S is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=3$ with downward orientation

5-7f

- $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+5 \mathbf{k}$,
S is the boundary of the region enclosed by the cylinder $x^{2}+z^{2}=1$ and the planes $y=0$ and $x+y=2$

