5-7 Videos Guide

5-7a

- Surface integral of a scalar field f(x, y, z)
 - o $\iint_{S} f(x, y, z) dS = \iint_{D} f(\mathbf{r}(u, v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$ Note that $dS = |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$.

Exercises:

- Evaluate the surface integral.
 - $\iint_S xyz \, dS$, S is the cone with parametric equations $x = u \cos v$, $y = u \sin v$, z = u, $0 \le u \le 1$, $0 \le v \le \pi/2$

5-7b

○ $\iint_S xy \, dS$, S is the part of the plane 2x + 2y + z = 4 that lies in the first octant

5-7c

• If S consists of multiple surfaces S_i , then

$$\iint_{S} f(x, y, z) dS = \iint_{S_{1}} f(x, y, z) dS + \iint_{S_{2}} f(x, y, z) dS + \cdots \iint_{S_{n}} f(x, y, z) dS$$

Exercise:

Evaluate the surface integral.

$$\iint_{S} (x^2 + y^2 + z^2) \, dS,$$

S is the part of the cylinder $x^2 + y^2 = 9$ between the planes z = 0 and z = 2, together with its top and bottom disks

5-7d

- Surface integral of a vector field $\mathbf{F}(x, y, z)$
 - o Flux is $\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_S \mathbf{F} \cdot \mathbf{n} \ dS = \iint_D \mathbf{F} \cdot (\mathbf{r}_u \times \mathbf{r}_v) dA$ Note that $d\mathbf{S} = \mathbf{n} dS = (\mathbf{r}_u \times \mathbf{r}_v) \ dA$, where \mathbf{n} is a unit normal vector and $\mathbf{r}_u \times \mathbf{r}_v$ is simply a normal vector to the surface S.
 - o If x and y are the parameters, we have $\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \left(-P \frac{\partial g}{\partial x} Q \frac{\partial g}{\partial y} + R \right) dA, \text{ for upward orientation. The signs of the integrand change for downward orientation.}$

Exercises:

5-7e

- Evaluate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$ for the given vector field \mathbf{F} and the oriented surface S. In other words, find the flux of \mathbf{F} across S. For closed surfaces, use the positive (outward) orientation.
 - o $\mathbf{F}(x,y,z) = -x\,\mathbf{i} y\,\mathbf{j} + z^3\,\mathbf{k}$, S is the part of the cone $z = \sqrt{x^2 + y^2}$ between the planes z = 1 and z = 3 with downward orientation

5-7f

o $\mathbf{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + 5 \mathbf{k}$, S is the boundary of the region enclosed by the cylinder $x^2 + z^2 = 1$ and the planes y = 0 and x + y = 2